Тема 3. Сложные проценты
Сложные проценты применяются в долгосрочных финансово-кредитных операциях, если проценты не выплачиваются периодически сразу после их начисления за прошедший интервал времени, а присоединяются к сумме долга. Присоединение начисленных процентов к сумме, которая служила базой для их определения, часто называют капитализацией процентов.
Формула наращения по сложным процентам
Пусть первоначальная сумма долга равна P, тогда через один год сумма долга с присоединенными процентами составит P(1+i), через 2 года
, через n лет - P(1+i) n . Таким образом, получаем формулу наращения для сложных процентов
где S- наращенная сумма,i - годовая ставка сложных процентов, n - срок ссуды, (1+i) n - множитель наращения.
В практических расчетах в основном применяют дискретные проценты, т.е. проценты, начисляемые за одинаковые интервалы времени (год, полугодие, квартал и т.д.). Наращение по сложным процентам представляет собой рост по закону геометрической прогрессии, первый член которой равен P, а знаменатель (1+i).
Отметим, что при сроке n<1 наращение по простым процентам дает больший результат, чем по сложным, а при n>1 - наоборот. В этом нетрудно убедиться на конкретных числовых примерах. Наибольшее превышение суммы, наращенной по простым процентам, над суммой, наращенной по сложным процентам, (при одинаковых процентных ставках) достигается в средней части периода.
Формула наращения по сложным процентам, когда ставка меняется во времени
В том случае, когда ставка сложных процентов меняется во времени, формула наращения имеет следующий вид
где i1, i2. ik - последовательные значения ставок процентов, действующих в периоды n1, n2. nk соответственно.
Формула удвоения суммы
В целях оценки своих перспектив кредитор или должник может задаться вопросом: через сколько лет сумма ссуды возрастет вN раз при данной процентной ставке. Обычно это требуется при прогнозировании своих инвестиционных возможностей в будущем. Ответ получим, приравняв множитель наращения величинеN:
а) для простых процентов
(1+niпрост.) = N, откуда
б) для сложных процентов
(1+iсложн.) n =N, откуда
Особенно часто используется N=2. Тогда формулы (21) и (22) называются формулами удвоения и принимают следующий вид:
а) для простых процентов
б) для сложных процентов
Если формулу (23) легко применять для прикидочных расчетов, то формула (24) требует применения калькулятора. Однако при небольших ставках процентов (скажем, менее 10%) вместо нее можно использовать более простую приближенную. Ее легко получить, если учесть, что ln 2 » 0,7, а ln(1+i) » i. Тогда
n» 0,7/i. (25)
Начисление годовых процентов при дробном числе лет
При дробном числе лет проценты начисляются разными способами:
1) По формуле сложных процентов
2) На основе смешанного метода, согласно которому за целое число лет начисляются сложные проценты, а за дробное - простые
где n=a+b, a-целое число лет, b-дробная часть года.
3) В ряде коммерческих банков применяется правило, в соответствии с которым за отрезки времени меньше периода начисления проценты не начисляются, т.е.
Номинальная и эффективная ставки процентов
Номинальная ставка . Пусть годовая ставка сложных процентов равна j, а число периодов начисления в году m. Тогда каждый раз проценты начисляют по ставке j/m. Ставка jназывается номинальной. Начисление процентов по номинальной ставке производится по формуле:
где N - число периодов начисления.
Если срок ссуды измеряется дробным числом периодов начисления, то при m разовом начислении процентов в году наращенную сумму можно рассчитывать несколькими способами, приводящими к различным результатам:
1) По формуле сложных процентов
где N/t - число (возможно дробное) периодов начисления процентов, t - период начисления процентов,
2) По смешанной формуле
где a - целое число периодов начисления (т.е. a=[N/t] - целая часть от деления всего срока ссуды N на период начисления t),
b - оставшаяся дробная часть периода начисления (b=N/t-a).
Из сопоставления наращенных сумм видим, что наибольшего значения она достигает во втором случае, т.е. при начислении на дробную часть простых процентов.
Эффективная ставка показывает, какая годовая ставка сложных процентов дает тот же финансовый результат, что и m -разовое наращение в год по ставке j/m.
Если проценты капитализируются m раз в год, каждый раз со ставкой j/m, то, по определению, можно записать равенство для соответствующих множителей наращения:
где iэ - эффективная ставка, а j - номинальная. Отсюда получаем, что связь между эффективной и номинальной ставками выражается соотношением
Обратная зависимость имеет вид
Учет (дисконтирование) по сложной ставке процентов
Здесь, также как и в случае простых процентов, будут рассмотрены два вида учета - математический и банковский.
Математический учет . В этом случае решается задача обратная наращению по сложным процентам. Запишем исходную формулу для наращения
и решим ее относительно P
учетный или дисконтный множитель.
Если проценты начисляются mраз в году, то получим
Величину P, полученную дисконтированием S, называют современной или текущей стоимостью или приведенной величиной S. Суммы P и S эквивалентны в том смысле, что платеж в сумме Sчерез n лет равноценен сумме P, выплачиваемой в настоящий момент.
Разность D=S-P называют дисконтом.
Банковский учет. В этом случае предполагается использование сложной учетной ставки. Дисконтирование по сложной учетной ставке осуществляется по формуле
где dсл - сложная годовая учетная ставка.
Дисконт в этом случае равен
При использовании сложной учетной ставки процесс дисконтирования происходит с прогрессирующим замедлением, так как учетная ставка каждый раз применяется к сумме, уменьшенной за предыдущий период на величину дисконта.
Номинальная и эффективная учетные ставки процентов
Номинальная учетная ставка . В тех случаях, когда дисконтирование применяют m раз в году, используют номинальную учетную ставку f. Тогда в каждом периоде, равном 1/m части года, дисконтирование осуществляется по сложной учетной ставке f/m. Процесс дисконтирования по этой сложной учетнойm раз в году описывается формулой
где N - общее число периодов дисконтирования (N=mn).
Дисконтирование не один, а m раз в году быстрее снижает величину дисконта.
Эффективная учетная ставка. Под эффективной учетной ставкой понимают сложную годовую учетную ставку, эквивалентную (по финансовым результатам) номинальной, применяемой при заданном числе дисконтирований в году m.
В соответствии с определением эффективной учетной ставки найдем ее связь с номинальной из равенства дисконтных множителей
из которого следует, что
Отметим, что эффективная учетная ставка всегда меньше номинальной.
Наращение по сложной учетной ставке. Наращение является обратной задачей для учетных ставок. Формулы наращения по сложным учетным ставкам можно получить, разрешая соответствующие формулы для дисконтирования (39 и 41) относительно S. Получаем
2.2 Непрерывные проценты
Наращение и дисконтирование
Наращенная сумма при дискретных процентах определяется по формуле
где j - номинальная ставка процентов, а m - число периодов начисления процентов в году.
Чем больше m, тем меньше промежутки времени между моментами начисления процентов. В пределе при m®¥ имеем
где e - основание натуральных логарифмов.
Используя этот предел в выражении (45), окончательно получаем, что наращенная сумма в случае непрерывного начисления процентов по ставкеj равна
Для того, чтобы отличать ставку непрерывных процентов от ставок дискретных процентов, ее называют силой роста и обозначают символом d. Тогда
Сила ростаd представляет собой номинальную ставку процентов при m®¥.
Дисконтирование на основе непрерывных процентных ставок осуществляется по формуле
Связь дискретных и непрерывных процентных ставок
Дискретные и непрерывные процентные ставки находятся в функциональной зависимости, благодаря которой можно осуществлять переход от расчета непрерывных процентов к дискретным и наоборот. Формулу эквивалентного перехода от одних ставок к другим можно получить путем приравнивания соответствующих множителей наращения
Из записанного равенства следует, что
Расчет срока ссуды и процентных ставок
В ряде практических задач начальная (P) и конечная (S) суммы заданы контрактом, и требуется определить либо срок платежа, либо процентную ставку, которая в данном случае может служить мерой сравнения с рыночными показателями и характеристикой доходности операции для кредитора. Указанные величины нетрудно найти из исходных формул наращения или дисконтирования. По сути дела, в обоих случаях решается в известном смысле обратная задача.
Срок ссуды
При разработке параметров соглашения и оценивании сроков достижения желательного результата требуется определить продолжительность операции (срока ссуды) через остальные параметры сделки. Рассмотрим этот вопрос подробнее.
А) При наращивании по сложной годовой ставке i. Из исходной формулы наращения
где логарифм можно взять по любому основанию, поскольку он имеется как в числителе, так и в знаменателе.
Б) При наращивании по номинальной ставке процентов m раз в году из формулы
В) При дисконтировании по сложной годовой учетной ставке d. Из формулы
Г) При дисконтировании по номинальной учетной ставке mраз в году. Из
приходим к формуле
При наращивании по постоянной силе роста. Исходя из
Расчет процентных ставок
Из тех же исходных формул, что и выше, получим выражения для процентных ставок.
А) При наращивании по сложной годовой ставке i. Из исходной формулы наращения
Б) При наращивании по номинальной ставке процентов m раз в году из формулы
В) При дисконтировании по сложной годовой учетной ставке d. Из формулы
Г) При дисконтировании по номинальной учетной ставке mраз в году. Из